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THE SENSITIVITY OF THIN~WALLED COMPRESSION
MEMBERS TO COLUMN AXIS IMPERFECTION

A. VAN DER NEUT

Department of Aeronautical Engineering, Delft University of Technology,
Delft, The Netherlands

Abstract-Imperfection sensitivity of thin-walled compression members to initial waviness of the composing
walls and to imperfection of the column axis was demonstrated in Ref. [1). The effect of the latter imperfection
however was not adequately analyzed. The present report gives the correction and evaluates in the case of an
idealized column the reduction of the failure load due to this kind of imperfection, which appears to be significant.
Elastic behaviour has been assumed.

NOTATION

a wave amplitude of flange imperfection
b flange width (Fig. 1)
c half of section depth, radius of gyration (Fig. 1)
eo wave amplitude of column axis imperfection
h flange thickness (Fig. 1)
x longitudinal coordinate
I inertia moment of column section
K compressive load of column, failure load
L half wavelength of overall buckling
M bending moment
P flange load
R KE/K, = 3(1- v2)(b/h. C/L)2, interaction parameter
W deflexion of column
IX a/h, flange imperfection parameter
f3 eo/c, column axis imperfection parameter

edge strain of flange
1I d(P/ljl/d(E/t;t)
A KiK1, load parameter
fi k{211' 2 -1I11")
ill Wic
~ nx/L
( l' d( )/d(P/Pt)

( r d( )/d~

suffix b refers to buckling load for Ci # 0, f3 = 0
suffix I refers to local buckling load
suffix E refers to Euler buckling load

1. INTRODUCTION

THE author's first paper [1] on the interaction of local buckling and overall buckling of
thin-walled compression members showed in the case of an idealized column severe im
perfection-sensitivity when the ratio R of Euler load K E to local buckling load K 1 is about
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(1)

one. Two kinds of imperfection were considered; 1. imperfections similar to the local
buckling mode, the amplitude of which is a times the wall thickness; 2. imperfections
similar to the overall buckling mode.

It was shown that the imperfection rJ., irrespective of its magnitude, keeps the buckling
load K b below the local buckling load K t , for the considered model up to R = 2. Sub
sequently Koiter and van Kuiken [2J gave asymptotic formulae for the strength reduction
due to rJ. and Thompson [3J investigated on the basis of the data of [IJ the optimum design,
showing that the commonly accepted criterion that the optimum is at R = 1 is wrong
and that the optimum shifts to some value of R < 1 depending on rJ. and erodes more and
more with rJ. increasing.

In order to investigate the sensitivity to column axis imperfection Ref. [IJ established
the slope of the load-deflexion curve at the bifurcation Kb • It appeared that the equi
librium at K/) is instable with respect to small finite deflexions up to R = 1·4-1·6, depending
on a. Therefore column imperfection-sensitivity could be expected. Reference [IJ also
deals with the further strength reduction due to this effect. However the author upon
further examination of this latter problem has come to the conclusion that this part of
Ref. [IJ needs correction. The object of the present paper is to bring the correction and to
discuss in more detail the interesting and by no means negligible effect of column axis
imperfection. Though the nonlinear relation between the bending moment M and small
finite deflexion W of the column as given in Ref. [1] is correct, its derivation is not quite
straightforward. The Appendix of this paper gives a more elegant derivation. This
derivation has been given in an earlier paper by Meyer and van der Neut [4J, which got
only limited distribution.

2. THE DIFFERENTIAL EQUATION AND ITS SOLUTION

The model considered in Ref. [IJ has the section shown in Fig. 1. The axial stress
carrying parts are two equal flanges (width b, thickness h) with equal imperfection rJ.,

simply supported at their edges by webs (width 2c) which serve to maintain the structural
integrity of the strut without contributing to the transmission of axial stresses.

Due to eccentricity e(x) of the column axis any axial load K causes bending moments
and consequently finite deflexions W(x).

The equilibrium of the element dx requires

d 2M d 2(W+e) _ 0
dx2 +K dx2 -.
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M can be expressed in W by means of the equation (6) of the Appendix with these two
alterations:

1. I] and its derivatives pertaining to K b have to be replaced by these quantities per
taining to K ;

2. k = O.
Then

(2)

where

(3)

One might have some doubt about the validity of Appendix, equation (6) for this case
where the column axis is imperfect in the unloaded condition. The proof of its validity has
been given in the following way, where the final deflected configuration W is being reached
through a number of stages. The complete derivation will not be reproduced because it
is rather lengthy.

Stage O. The column is unloaded in its initially curved position, GIO = G20 = 0 (upper
and lower flange will be indicated by the suffices 1 and 2 respectively; the stage number
appears as second suffix).

Stage 1. The load K is applied and deflexion is being prevented (WI = 0); G11 = G21

= GK and PI I = P 21 = PK = tK.
Stage 2. While the load K is still present the deflexion W2 = - e is being forced upon

the column, straightening it. The edge strains G12' G22 = E12 +2c(d2ejdx2) and the flange
loads P12 , P22 = K-P12 are unknown.

Stage 3. The column is brought back to stage 1 by the deflexion W3 = e. Hence
Gi3 = GK and Pi3 = !K (i = 1,2). Using the Taylor series of P in the vicinity of Pi2 (up to
the third order term), PK (=!K) and the first, second and third derivatives of P to E at
PK can be expressed into GK-Gi2' Pi2 and the derivatives at Pi2 . Inversely these equations
can be used to solve for Pj2 and the derivatives at Pi2 , expressing them into GK- Gi2' PK

and the derivatives at PK •

The condition PI2 + P22 = K yields GI2 - GK (and G22 - EK ).

Stage 4. The column is brought back to Stage 2 by the deflexion W4 = - e, straight
ening it again.

Stage 5. Starting from Stage 4 with straight column axis the column is brought in its
final position by the deflexion Ws = W+ e. Applying again the Taylor series of P, which
has been used in Stage 3, the final flange loads PiS = Pi are being expressed into Pi2 and
the derivatives at Pi2 , which have been established at Stage 3, and into GiS - Gi2 = Ej - Gi2'

Using G2 = GI -2c[d2(W+e)jdx2] the condition PI +P2 = K yields GI -G12' Next PI and
P2 can be established, which yield equation (2) for the bending moment M = (PI - P2 )c.

The nonlinear differential equation of Wappears to be

(4)
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This equation will be solved for the column of length 2L clamped at its ends, then the
boundary conditions are

x = ±L:W= 0,
dW
-d =0,

x
(S)

and with the imperfection corresponding to the Euler mode

e = eo(cos nxlL+ 1). (6)

With the dimensionless coordinate e = nxlL,theloadratiosR = KEIL1and A = KIKI>
the dimensionless deflexion W = W Ie, the imperfection parameter [3 = eo/e and taking
into account that n2e21L2

BE equations (4-6) become

(7)

e= ±n:w=O, W= 0, (8)

e- = [3(cos ~ + 1),
e

where ( r = [d( )/deJ.
The boundary conditions are satisfied by a solution

cr)

w = L W2i - 1[cos(2i - l)e + 1].
;=1

Integrating equation (7) twice:

(9)

(10)

A.
- IJR[3(cOS e + 1)+ constant. (11 )

Restricting equation (10) to

w = WI cos e+w3cos 3~ +w5cos S~ +(w 1 +W3 +(5)

substitution of w into equation (11), thereby neglecting the cos 7e-terms, etc. yields

A. A.
IJR(w l +W2+(3) = IJR[3+constant,

[-(1- 1J~)WI +iJ1R2W~ . <PI] cos ~ = - 1J~[3 cos e,

[-(9-1J~)W3+*J1R2W~<P3J cos3e = 0,

[ (2S- IJ~)W5+ ~7J1R2Wfw3<P5] cos Se = 0,

(12)

(13)

(14)

( IS)



(17)

(16)

(18)
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where

4>1 = 1+9 W3 +2. 92(W
3 )2 +2.9. 25w3~S+2. 252 (WS) 2 +92 . 25W~~S,

WI WI w t WI WI

W3 w 5 W 3W S 3 (W3) 3 . 2 W3W;4>3 = 1+54---+75-+2.3.9.25-2-+3.9 - + 2.3.9.25 -3--'
w t WI WI WI w t

,J.. _ 1 50 Ws 9W3 2 9 25w3WS 25
3

W;
'l'S - + + +.. 2 + 2

9 W3 WI WI 9 W t W3

In first approximation it will be assumed that W3/Wt and W 5 /W I will be so small that
4>t, 4>3' 4>5 can be put equal to 1. Then equation (13) gives for a load K (or A) the relation
between the imperfection Pand the deflexion w. Figure 2 depicts the left hand side of this

FIG. 2.

equation for J1. > O. The ordinate being equal to (A/tlR)P the figure enables to read for
given values A. and Pthe deflexions WI at which the column is in equilibrium. There are
two positive roots WI' Keeping K (or A) constant and increasing Pthe two roots approach
each other and finally they coincide where dP/dw t O. This is the maximal imperfection
at which equilibrium can exist at the load K, or inversely K is the maximal load that the
column can sustain at this particular imperfection. The equation

dP/dWt = 0 (19)

together with equation (13) yield the relation between Pand the failure load K. Equation
(19) yields the deflexion at the maximal load

_~(1 -A./'1R) l: ~ (20)
W t - 3 J1. • R'

whereupon equation (13) yields the imperfection Pat which the column strength is K
(or A.).

P= ~ '1(l-A/'1R)~
9 AJl!

(21)
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(22)

(23)

(27)

(26)

Having established WI equations (17) and (18) yield

W3 1- A/I]R
WI 9(9-A/I]R)'

Ws (I-A/I]R)2

WI 3(9 - A/I]R)(25 - A/I]R)'

Since AII'JR is always smaller than 1, it appears that W3/W I < 8\ and WS/w l < 6~S' Then
equations (16-18) yield cP I < 1·147, cP3 < 1·807, cP s < 1·786. Taking cP I , cP 3' cP s into account
the formulae (20-23) inclusive are to be replaced by

WI = (w I )lcPl+' (24)

/3 = /3lcPl+' (25)

W3 _ (w 3) cP3
w I - WllcPl'

Ws = (w s) cP3~S,
WI WI I cPI

where the quantities ( )1 refer to the first approximation given by equations (20) to (23)
inclusive.

Taking for cPI' cP3, cPs their upper limits given above a second approximation of WI'
/3, W3/W I ' WS/w l is being obtained. Then equations (16-18) yield a second approximation
of cP I' cP3' cPs· After the fifth iteration the error is within 1 per cent with the following results
cPI = 1·446, cP3 = 3·047, cPs = 2-455.

WI> 0·83(w I)I' /3 > 0·83(/3)1, W3 < 2.11(W3) = 0.026, Ws < 3.58(WS) = 0.0053.
WI WI I WI WI I

These figures represent the lower limit for WI' and /3 and the upper limit for W3/W I and
WS/w I, which are reached when AII'JR = O. They are being approached when R » 1.

The error when putting cPI = cP2 = cP3 = 1 comes predominantly from W3/W I . It
appears from equation (22) that the error decreases with A/I]R increasing, therefore when
R is small and A is large. Then, as appears from equation (21), /3 will be small.

So as to give a quantitative idea of the magnitude of the error, two numerical examples
will be mentioned.

1. rx = 2·5%, R = 3·29, A/I]R = 0·297, yielding /31 = 0·116.
Then

Iteration yields

(
W

3
) = 0.00897,

WI I
( w s ) = 0.000767.

WI I

cPI = 1·193, cPs = 1·91

/3 = 0·914/31'

2. rx = 2·5 %, R = 1·83, A/I]R = 0·527, yielding /31 = 0·062.
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Then

(
W

3
) = 0.00609,

WI I
(w s) = 0.000352.

WI I

Iteration yields

cPI = 1·09, cP3 = 1·51, cPs = 1·53 and W3 = 1.39(W3) ,
WI WI I

/3 = 0·957/31'

The aim of this investigation is to establish for a given configuration IX, R and a given
load A the imperfection /3 at which A is the failure load. Therefore the significant error
when omitting the iteration is the error of the ratio /3//31'

In the first numerical example this error is 8·6 per cent, in the second one 4·3 per cent.
It is not worthwhile to perform the iterative correction of these errors, firstly, because
the model under consideration is an idealized one serving to study the trends of the effects
of geometrical imperfections and secondly, because the analysis contains still another in
accuracy, the one caused by the truncation of the Taylor series of P after the third order
term. This inaccuracy increases with increasing curvature, therefore with increasing
imperfection /3. In the first numerical example, where /31 = 11·6 per cent, the maximal
strain ile due to deflexion is ile/e[ = 21-4 per cent. In the second example, where
/31 = 6·2 per cent, ile/e, = 10·5 per cent. Whereas in this second case the truncated Taylor
expansion reproduces the P-e-relation up to ile fairly well, this is no longer true in the
first case. Then there is no need for the iterative correction with large imperfections and
the small error associated with small imperfections should be disregarded. The conclusion
is that in the numerical evaluation the approximation of /3 by equation (21) may be used.

3. EVALUATION AND DISCUSSION OF RESULTS

The numerical evaluation of /3 (equation 21), W 3/W I (equation 22) and of the maximal
strain increments,

have been carried out for IX and are respectively 0·01 per cent, 1·25 per cent, 2·5 per cent,
5 per cent, 10 per cent, 20 per cent, with each IX at a number of values of R from 0·7 up to
about 4. With each set of values IX, R a number of values A = K/K, were taken, K being

TABLE 1

0·01
0·9989

0·25
0·9734

2·5
0·9577

5
0·9316

10
0·8916

20
0·8222
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always smalIer than the buckling load K/) = IJ/)K E of the perfectly straight column. Another
upper limit of A. folIows from the condition that J1 > 0: formula (20) and Fig. 2 show that
with J1 < 0 the A-W curve has no maximum. These upper limits are function of IX and are
given in Table 1.

Figure 3 illustrates for one value of IX (2·5 per cent) and for some values of R the shape
of the f3-J.. curves. It shows that the value of R, where K/)IKl = 0·9577 (J1b = 0), separates
two regions with different character of the f3-J.. curves. With smaller R any imperfection

100

0·9577

/3. %

FIG. 3.

10 15

fJ yields reduction of the failure load J.. as compared to the buckling load K/)IK l of the
perfectly straight column. When R is greater there is again reduction of strength provided
f3 exceeds some critical value f3cr' Then the column strength does not even exceed K l ,

though both KE and K/) may be much greater than Kl . However for f3 < Pcr the A.-W

curve has no other maximum than A/) = K/)IK1 at W = 00 (and as usual at some finite
value of w failure will occur at a load somewhat below K/). The width of this "window"
f3cr across which the load carrying capacity can approach the high level of the buckling
load K/) depends, as appears from Fig. 3, on R but as well on IX.

Figure 4 gives Pcr as a function of Rand iX. With increasing Rand iX the "window" is
wider, which means that the unfavourable effect of a certain amount of column imper
fection is absent when R is large-short columns-and iX is large-large imperfections of the
flanges. This peculiar behaviour can be understood as folIows.
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R (=KE IK,)

FIG. 4.

The column, before reaching the safe load level above K/, where the imperfection
hardly affects its strength, has to traverse the critical load range, where the second derivative
of I] (therefore d3P/ds3 ) has large negative values (see Ref. [1], Fig. 5), which causes J1. to
be large. With small flange imperfections <:I. this zone of danger where - 1]" is large is
situated near K/K/ = 0·8 to 0·9. At this load level the imperfection Pinduces large de
flexions. Only when Pis sufficiently small (within the "window") the column can get across
this zone of danger and reach the higher load level where a positive 1]" exerts its favourable
effect.

This phenomenon has much in common with the behaviour of rotating shafts. When
the shaft is being accelerated slowly it will explode when traversing the critical speed,
due to initial deflexion or eccentric masses.

A convenient representation of the numerical results is given by the Figs. 5a-e. They
show A. as a function of R for a number of constant values of p. These curves have been
obtained from graphs such as Fig. 3 for the various values of <:I..

The upward sweep of the curve for constant Ptowards the Kb/K/ curve (P = 0) occurs
at the value of R at which P= Per. This value of R can be read from Fig. 4.

The validity of the results, shown in these figures, depends on the validity of the trun
cated Taylor series in representing the P-s relation. This can be judged by considering the
maximal strain increment (S2 -SK)e/ at the maximum load K.

The variation of slope of the P-s curve near A. } is less pronounced with increasing
a. Therefore the range of validity of the truncated series increases with increasing a. Also
the approximation is better when 1- A. increases. Some checks have been made; Table 2
gives the global limit up to which the truncated series represents (s - SK)/S/ reliably.

The strain increment increases of course with increasing P, but as well with increasing
R. Therefore it should be possible to give for each value of a the limit P(R) up to which
the curves are fairly correct. Such evaluation of the numerical results has not been carried
out in full, but only partially. A practical upper limit for non-straightness of compression
members is about P= 6 per cent. Then up to R 1·8 the maximal strain increment is
within the limits, mentioned in Table 2, for a respectively }·25, 2·5 and 5 per cent. As stated
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TABLE 2

(.(/~ A (£-eKl!£/

1·25 0·85 0·11
2·5 0·85 0·12
5 0·80 0·15

10 0·72 0·27

before the accuracy improves with greater a.. For instance with a. = 5 per cent and R = 1·8
the curves are correct up to {J = 10 per cent. For rt. = 10 per cent the curve for {J 15 per
cent is correct up to R = 1·8. Beyond those limits the general trend of the curves is correct,
though they may be more or less in error numerically.

Inspection of Figs. 5 shows that the strength reduction Ab - Adue to {J is (see Table 3):
I. Virtually constant over the range 0·9 < R < 1·6;
2. Almost equal for a. is 1·25 per cent, 2·5 per cent, 5 per cent and 10 per cent.

The reduction 1-Ab of the buckling load due to the imperfection a. alone is maximal at
R = 1. A realistic value of a. for actual structures is presumably 2 or 3 per cent. Figure 5b
gives at R = 1 1 Ab = 0·13 and for {J = 7 per cent Ab-A = 0·115. At R #- 1 1 Ab de
creases rapidly and the strength reduction due to {J predominates. It appears that both the
rt.- and {J-imperfections affect the failure load significantly.

4. CONCLUSIONS

Whereas initial waviness of the composing thin walls (a.) reduces the buckling load
mainly when K EIK j ( = R) is about 1, the imperfection orthe column axis has its strength
reducing effect over a much wider range ofR, more in particular in the region R > 1(Figs. 5).

It keeps the failure load K below K, (A < 1) up to a value R which depends on the

TABLE 3

R 0·9 1·0 1·2 1·4 1·5 1·6

fJ% 0: <jo Ab-A

1·25 0·075 0·085 0·085 0·08 0·08 0·08
2·5 0·085 0·09 0·085 0·085 0·085 0·085

4 5 0·08 0·085 0·085 0·085 0-08 0·08
10 0·06 0·07 0·07 0·07 0·065
20 0·05 0·055 0·055 0

1·25 0·10 0·115 0·11 0·105 0·105 0·105
2·5 0·11 0·115 0·115 0·115 0·12 0·12

7 5 ().II 0·115 0·12 0·12 0·12 0·12
10 0·10 0·105 0·105 0·11 0·11 0·11
20 0·075 0·08 0·08 0-075

1·25 0·13 0·15 0·15 0·145 0·145 0·145
2·5 0-15 0·155 0·16 0·165 0·17 0·]7

15 5 0·155 0·165 0·]7 0·18 0·185 0·19
10 0·145 0·15 0-165 0-18 0·19 0·20
20 0·12 0·13 0-14 0·15 0·155
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amount of the imperfectIOns r:t. and p. This limiting R-value increases with decreasing r:t.

and increasing P(Figs. 5). For a given set of values Rand r:t. there exists a critical imper
fection Per (Fig. 4). When P> Per Ie does not exceed I. When P< Per the failure load is
hardly affected by Pand will be close to the buckling load K b (for P 0) (Fig. 3), which
may involve A > 1. Per increases with increasing rJ.. Therefore it might have a beneficial
effect upon the strength of columns when R > 1·5 to apply artificial waviness of the walls
with rJ. > 0·1. The strength reduction Ab ), due to Pis almost constant over 0·9 < R < 1·6
and is almost independent of rJ. over 0·0125 < rJ. < 0·05, which is the range of wall im
perfection with actual structures (Table 3).

Taking the practical limit of Pwith actual structures to be 6 or 7 per cent it appears
that r:t. and Pyield about equal strength reductions near R = 1, whereas the reduction due
to Pis the more important one when R > I. The numerical results apply to the column
section of Fig. 1, which is highly susceptible to the unfavourable effect of imperfections.
Actual structures will be imperfection sensitive as well, though to a lesser degree, because
by column bending the edges of some of their composing walls get strain increments of
opposite sign and therefore will be less sensitive to wall imperfection.

The foregoing conclusions are restricted to elastic behaviour.
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APPENDIX

The nonlinear relation between bending moment and column axis curvature

Reference 1 raises the question: how must the load vary so as to maintain equilibrium
when the column deflects slightly at the bifurcation load Kb? This equilibrium load

(I)

where k is quadratic in the deflexion W.
The flange loads at K b are Pb = tK b ; with the deflected column the upper and lower

flange carry PI and Pz , respectively. Then

Kb+k = PI +Pz ,

M = (PI - Pz)c.

(2)

(3)

The longitudinal flange edges are simply supported by webs, which serve to maintain
structural integrity of the column without contributing to the transmission ofaxial stresses,
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The compressive strains of the flange edges are Eb at Kb and under deflexion E 1 , EZ respec
tively. They are related to the deflexion W by the geometric relation

Et -Ez dZW
2c = dxz' (4)

Using the Taylor series for the relation between P and E, truncating it after the third order
term, we have

(5, i)1,2.Pi = Pb+(~~L(Ei -Eb)+M~:;L(Ei-Ebf +~( ~:;L(6i - Eb)3

The five equations (2-5) contain seven unknown quantities:

61,6Z,P1 ,PZ , W,k and M.

Using these five equations for eliminating the four unknowns 6t, 6Z' Pt, Pz the result
is a relation between M, Wand k:

(6)

where

IJ = dP/Pj
( )' = d( )jd(P/P/)

dElE! '

and I is the moment of inertia of the section I = 2bczh.
Recalling that k is quadratic in Wequation (6) says that deflexion modifies the bending

stiffness I'fbE1 according to the expression between square brackets, which is a quadratic
function of Wand thereby a function of x.
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A6CTpaKT-B CChV1Ke /II yKaJhlBaeTCl! '1YBCTBHTeJlhHOCTh K HeTO'lHOCTH TOHKOCTeHHoro ClKHMaeMoro

:meMeHTa K Ha'laJlhHOj,j BOJlHHCTOCTH COCTaBHhlX CTeHOK H K HeTO'lHOCTH OCH KOJlOHHhI. Ql!.HaKO, 3(jl(jleKT

nOCJlenHej,j HeTO'lHOCTH He aHaJ1If3HpOBaH ynOBJleTBOpHTeJlhHO. TIpennaraeMali CTaThSl ,llaeT HClIpaBJleHHe H

onpeneJllleT, nill! CilY'laSl H,lleam11HpOBaHHOj,j KOJlOHHhl, nOHHlKeHHe HarpY3KIf pa3pyweHHSI, B CJlellCTBHH

:noro pona HeTO'lHOCTH, KOTOpal! OKa3hIBaeTCl! 3Ha'lHTeilhHOj,j. npennonaraeTCSI IIOBeneHHe B ynpyroj,j

06naCTH.


